32
ɇɚɫɬɪɨɣɤɚ
MULTI DISPLAY (
Ɇɭɥɶɬɢ
-
ɞɢɫɩɥɟɹ
)
Ɉɛɴɟɞɢɧɢɜ ɩɥɚɡɦɟɧɧɵɟ ɞɢɫɩɥɟɢ ɜ ɝɪɭɩɩɵ
,
ɧɚɩɪɢɦɟɪ
,
ɤɚɤ ɧɚ ɪɢɫɭɧɤɟ ɧɢɠɟ
,
ɦɨɠɧɨ ɨɬɨɛɪɚɠɚɬɶ ɭɜɟɥɢɱɟɧɧɨɟ
ɢɡɨɛɪɚɠɟɧɢɟ ɧɚ ɜɫɟɯ ɷɤɪɚɧɚɯ
.
ȼ ɷɬɨɦ ɪɟɠɢɦɟ ɪɚɛɨɬɵ ɤɚɠɞɨɦɭ ɩɥɚɡɦɟɧɧɨɦɭ ɞɢɫɩɥɟɸ ɫɥɟɞɭɟɬ ɩɪɢɫɜɨɢɬɶ ɧɨɦɟɪ ɞɥɹ ɨɩɪɟɞɟɥɟɧɢɹ ɟɝɨ ɪɚɫɩɨɥɨɠɟɧɢɹ
.
(
ɉɪɢɦɟɪ
)
ɝɪɭɩɩɚ ɢɡ
1
6
(4 × 4)
ɝɪɭɩɩɚ ɢɡ
4 (2 × 2)
ɝɪɭɩɩɚ ɢɡ
9 (3 × 3)
ɝɪɭɩɩɚ ɢɡ
25 (5 × 5)
Ʉɚɤ ɧɚɫɬɪɨɢɬɶ
MULTI DISPLAY
ɇɚɠɢɦɨɦ ɤɧɨɩɨɤ ɜɵɛɢɪɚɟɬɫɹ
“
ɍɫɬɚɧɨɜɤɚ
ɦɭɥɶɬɢɷɤɪɚɧɚ
”.
ɇɚɠɢɦɨɦ ɤɧɨɩɤɢ ɨɬɨɛɪɚɠɚɟɬɫɹ ɦɟɧɸ
“
ɍɫɬɚɧɨɜɤɚ
ɦɭɥɶɬɢɷɤɪɚɧɚ
”.
ɇɚɠɦɢɬɟ ɞɥɹ ɜɵɛɨɪɚ ɦɟɧɸ ɞɥɹ ɪɟɝɭɥɢɪɨɜɤɢ
.
ɇɚɠɚɬɢɟɦ ɜɵɛɟɪɢɬɟ ɨɩɰɢɸ ɜ ɦɟɧɸ
.
ɇɚɠɢɦɨɦ ɤɧɨɩɤɢ ɨɬɨɛɪɚɠɚɟɬɫɹ ɷɤɪɚɧ ɦɟɧɸ
“
ɍɫɬɚɧɨɜɤɚ
”.
2/2
ɍɫɬɚɧɨɜɤɚ
ɍɫɬɚɧɨɜɤɚ ɦɭɥɶɬɢɷɤɪɚɧɚ
ɇɚɫɬɪɨɣɤɚ Ʉɚɪɬɢɧɤɚ
-
ȼ
-
Ʉɚɪɬɢɧɤɟ
ȼɟɪɬ
.
ɉɨɥɨɠɟɧɢɟ
ɍɫɬɚɧɨɜɤɚ ɬɚɣɦɟɪɚ
ɍɫɬ
-
ɤɚ ɬɟɤɭɳɟɝɨ ɜɪɟɦɟɧɢ
Ɉɪɢɟɧɬɚɰɢɹ ɞɢɫɩɥɟɹ
ɉɟɣɡɚɠ
× 2
ɍɫɬɚɧɨɜɤɚ ɦɭɥɶɬɢɷɤɪɚɧɚ
Ƚɨɪɢɡɨɧɬɚɥɶɧɵɣ ɪɚɡɦɟɪ
ȼɕɄɅ
A1
ȼɕɄɅ
ɋɢɧɯɪ
.
ɹɪɤɨɫɬɢ
ȼɟɪɬɢɤɚɥɶɧɵɣ ɪɚɡɦɟɪ
ɉɨɥɨɠɟɧɢɟ
ȼɕɄɅ
ɋɤɪɵɜɚɬɶ ɜɢɞɟɨ ɧɚ ɫɬɵɤɟ
× 2
ɍɫɬɚɧɨɜɤɚ ɦɭɥɶɬɢɷɤɪɚɧɚ
1
2
3
ɉɭɧɤɬ
ɉɨɞɪɨɛɧɨɫɬɢ
ɍɫɬɚɧɨɜɤɚ ɦɭɥɶɬɢɷɤɪɚɧɚ
ȼɵɛɟɪɢɬɟ
“
ȼɄɅ
”
ɢɥɢ
“
ȼɕɄɅ
”.
ɉɪɢɦɟɱɚɧɢɟ
:
ȿɫɥɢ ȼɵ ɭɫɬɚɧɨɜɢɬɟ ɩɭɧɤɬ ɍɫɬɚɧɨɜɤɚ ɦɭɥɶɬɢɷɤɪɚɧɚ ɜ ɩɨɥɨɠɟɧɢɟ ȼɄɅ
,
ɨɩɰɢɹ ȼɟɪɬ
.
ɩɨɥɨɠɟɧɢɟ ɛɭɞɟɬ ɧɟɞɨɫɬɭɩɧɚ
.
Ƚɨɪɢɡɨɧɬɚɥɶɧɵɣ ɪɚɡɦɟɪ
ȼɵɛɟɪɢɬɟ
“× 1”, “× 2”, “× 3”, “× 4”, “× 5”.
ȼɟɪɬɢɤɚɥɶɧɵɣ ɪɚɡɦɟɪ
ȼɵɛɟɪɢɬɟ
“× 1”, “× 2”, “× 3”, “× 4”, “× 5”.
ɋɤɪɵɜɚɬɶ ɜɢɞɟɨ ɧɚ
ɫɬɵɤɟ
ȼɵɛɟɪɢɬɟ
“
ȼɄɅ
”
ɢɥɢ
“
ȼɕɄɅ
”.
ɋɤɪɵɜɚɟɬ ɫɬɵɤɢ ɦɟɠɞɭ ɞɢɫɩɥɟɹɦɢ
.
Лример
Лример
ɉɨɞɯɨɞɢɬ ɞɥɹ ɨɬɨɛɪɚɠɟɧɢɹ
ɮɢɥɶɦɨɜ
.
Ɉɬɨɛɪɚɠɚɟɬ ɫɬɵɤɢ ɦɟɠɞɭ ɞɢɫɩɥɟɹɦɢ
.
Лри
Лрим
Лри
Лрим
мер
Лример
мер
Лример
ɉɨɞɯɨɞɢɬ ɞɥɹ ɨɬɨɛɪɚɠɟɧɢɹ
ɧɟɩɨɞɜɢɠɧɵɯ ɢɡɨɛɪɚɠɟɧɢɣ
.
ȼɄɅ
ȼɕɄɅ
ɉɨɥɨɠɟɧɢɟ
ȼɵɛɟɪɢɬɟ ɧɭɠɧɵɣ ɧɨɦɟɪ ɪɚɫɩɨɥɨɠɟɧɢɹ
. (A1-E5 :
Ɉɛɪɚɳɚɣɬɟɫɶ ɤ ɫɥɟɞɭɸɳɟɦɭ
)
Ɋɚɫɩɨɥɨɠɟɧɢɟ ɧɨɦɟɪɨɜ ɞɢɫɩɥɟɟɜ ɞɥɹ ɤɚɠɞɨɝɨ ɜɚɪɢɚɧɬɚ ɦɨɧɬɚɠɚ
.
(
ɉɪɢɦɟɪ
)
( 2 × 1)
( 2 × 3 )
( 4 × 4 )
( 4 × 2 )
( 5 × 5 )
A
1
A2
A
3
A
4
A
5
B1
B
2
B3
B4
B5
C1
C
2
C3
C4
C5
D1
D
2
D3
D4
D5
E1
E
2
E3
E4
E5